b]
. Il.lmhingto(%\ Applec Pi

Volume 2 June]%O Number 6
Highlights

Clock Software-B. Field P 3

Dealersr Corner-P.Sand p 9

Pascal lower Case-Dr.Wo pl3
In This lssue.

Editorial

Event Que

Classifieds

Minutes

Signews

Software For The Experimenter's Real Time Clock
Bruce F. Field

Washington Apple Digest--Dave Efron

Dealer's Corner: Apple Writer to Text File Conversion
Paul A. Sand

Blaise Away: Dan Paymar meets M. Pascal--Lower Case Input
For Your Pascal Apple--Dr. Wo

L

Computerland -« applell -

For the best in personal computing

Personal Software™

SOFTAPE
D. C. Hayes Associates, Inc.
z

Mouniain Hardware, Inc. N

. CENTRONICS

@
t Integral Data Systems, Inc.

s R TN ;
b y 20t
)
7. A e NI DO W
H[suu“n[' 7 - =
T - e

 Information Utility

houston
instrument Hoeuristics
INC

A Automated Simulations gsanvo

Computerland’

@ We Know Small Computers.
. ComputerLand/Tysons Corner
8411 Old Courthcuse Road at Rt. 123 — 893-0424

Librarian

$12.00 per
interested
number
application form will be mailed to you. Or
if you prefer, write us at the above PO Box.

Officers & Staff

President -Bernard Urban 301) 229-3458
Vice President =Rich Wasserstrom (703 892-91”7
Treasurer -Bob Peck 301) 468-2305
Secretary -Dana Schwartz 301 725-6281
Members-at-Large-Scooter Conrad 01) 725-6251
-Mark Crosby 202) L488-1980
-Sandy Greenfarb (301) 674-5982
Editor -Bernard Urban Eabove;
Associate Editor-Rich Wasserstrom above
-Genevie Urban (301) 229-3458

-David Morganstein(301) 972-4263
Washington Apple Pi
gox 34E?1

P. O.
Washington, D.C. 20034
(301) B§68-2305
Membership dues for Washington Apple Pi are
calendar year. If you are
in Jjoining our club, call our
and leave your name and address, An

I

€VENT QUeEUE

Washington Apple Pi meets on the 4th
Saturday of each month at 9:30AM at
George Washington University School
of Engineering, 23rd and H Streets,
N.W. The July meeting will be held on
July 26.

NOVAPPLE meets on the 2nd Thursday
at 7:30PM at Computers Plus in Fran-
conia, and on the 4th Thursday at 7:30
PM at Computerland of Tysons Corner.

Classifieds

FOR SALE; Applesoft Firmware with
Autostart ROM and Applesoft Reference
Manual, $135. Tom Jones (H) 460-8773,
(O) 881-5310.

WANTED TO RENT: I would like to
rent an Apple II or II+ for one to three
months while waiting delivery of Apple
III. John Robb, Box 61, Rockville, Md.
340-2652 (day or evening).

Classified ads accepted from members 50 words or less at no
tharge provided the material
Submit your classified at least 30 days in advance attention
CLASSIFIED ADS,

is obviously non-commercial.

PO Box 34511, Washington, DC 20034.

€.DITORIAL

PRESIDENT'S MESSAGE

The votes are in and counted., As of this
month, we have a new administration. Your
new officers are listed elsewhere on this

page.

Let me express my personal thanks and that
of the entire membershig to our outgoin%
officers, John, Sue and Gena for jobs wel

done. But please don't stray too far (or
at all) - we need your help and sugport,
and hopefully you will be available to
serve 1in simllar capacities again. _ John
will stay on as honorary member of the
Executive Board. Sue is still our Program
Chairperson, and Gena continues as an

Associate Editor.

At a Board meeting held subsequently to

the elections (see Dana Schwartz's minutes
of the meetlnﬁ elsewhere in this issue),
we agreed to the following:

» Board meectings will be held

"regularly" on the second Wednesday of
each month. These meetings are open to
our membership and we encourage attendance

by any of you who wish to recommend new
directions or services, criticize, or
whatever, Exact time and place will be

announced on our official phone 468-2305,

» We ap801nted Tom Jones as our
Membership hairperson. Tom will 1look
into such things as a membership directory
(disk or otherwise), our makeu and
interests, and the issuance of membership
cards.

. Dave Efron is our new Ad Manager.
He will be our contact with the loecal

computer stores and the software and
hardware firms in general. Dave is also
interested

in organizin% ang and__all
rinted materials on the APPLE II.
opefully, we can establish a library or
libraries of such materials for the
benefit of our membership. Dave can help
immediately by focusing on the APNotes
that have come in from the IAC which have
been piling up and unfortunately gathering
dust at my home. Also, requiring
attention are the newsletters I've been
getting from our associate user grougs in
the Eastern IAC region who reciprocate the
mailing of our newsletters to them.
the

Voiced again and again was feeling

that we must do something about our
Saturday meetings. We have, it appears,
at least three groups of attendees. We

have many members who are new to computers
and who need all the assistance that the
club can muster. We also have members who
are highlg exgert in selected or several
areas. _They hecome bored by discussions
at the elementary or intermediate levels,
Then there are the {oun sters who like to
come to hear about the Iatest in games, to

la them and to swap them, Hersch
illoff's efforts to run a question and
answer session and Al Gass's SIG on games
are attempts to rectify some of hese
problems, This needs further attention.
A1l suggestions are most welcome,

mMinutes

The Washington Apple Pi meeting of May 31,
1980 was called to order at 9:45 AM by the
Vice President. The results of the annual
election (by mail ballot) were announced
by Chuck and Nanecy Philipp, who had
tallied the ballots. The
effective June 1, are:

President Bernie Urban
Vice President Rich Wasserstrom
Secretary Dana Schwartz
Treasurer Bob Peck

Members At Large - Scooter Conrad
Mark Crosby

Sandy Greenfarb

The following items of interest were
discussed. Sue Zakar announced that the
program for the June meeting would be
iven by Paul Sand on the subject of APPLE
II. She asked for volunteers for future
programs., The question of a membership
directory for the club was discussed.
Ideas were presented gro and con regardin
listing members wit their names an
addresses. It was announced that the club
is_in the process of setting up a modem
bulletin board, with John Moon 1n charge.
Dave Morganstein reported that we now have
19 library disks. here was a discussion
of why the purchased disks sometimes do
not work and suggestions for possible
correction of this were presented,
particularly that of adjusting the speed
of the disk drive., Bob Peck presented
some information on group purchases.

The meeting was then turned over to the
speaker of the morning, Theron Fuller. He
Eresented a program on Pilot, a higher

evel language used for computer assisted
instruction. His_discussion described
compilers, translators and their
structure. It was a most informative
presentation.

MINUTES OF JUNE EXECUTIVE BOARD MEETING

The June Executive Board meeting was held
on June 4 at the home of the President.
The meeting was called to order at T:U5PM.
The following items were covered:

] The Treasurer reported that
the club was having difficulties collect-
ing on some bills for newsletters and
ads. A motion was made that delinquent
commercial accounts be given news-
letters on a cash-only basis. The mo-
tion was tabled until the next meeting
to allow further collection efforts.

2y It was decided that the Board would
hold regular meetings on the second
Wednesday of each month and the membership
should be reminded that all are invited.

3. A revised format for the regular
club meetings was decided upon, and will
be announced by the President. The aim is
to provide more useful information to
members at all levels of experience.

4, The membership directory _ was
discussed and member Tom Jones
volunteered, and was directed by the
board, to come up with a suégested format.
A motlion was made and passed that whatever
form the directory takes, the membership
will be given the option to'withhold any
or all personal data as each wishes.

new officers,.

5u The Treasurer reported that it
would be in the club's best interest to
have an Advertising Manager for the
Newsletter. A motion was made and passed
that the club should search for and obtain
an Advertising Manager, expenses and

commission negotiable, for a trial period
of six months.

The meeting was adjourned at 10:15 PM.

Dana J. Schwartz, Secretary

(Ed. Note: The Executive Board has
decided to publish the minutes of their

meetings in order to keep the general
membership better informed on club
business.

SlaNews

In a previous Newsletter, Michael
Thomas offered to set up a SIG group
for students. His phone number was
listed incorrectly. The correct num-
ber is (703).978-8411

SOFTWARE FOR THE EXPERIMENTER'S REAL-TIME CLOCK

by Bruce F. Field

This article is a continuation of the description of a
real-time clock for the APPLE. The hardware details were
described in last month's Washington Apple Pi newsletter.
This month we will look at the software that is required for
the clock to keep time. When completed we will have the
ability to continuously display the time in the upper
right-hand corner of the screen even when running other
BASIC or machine language programs.

To review the hardware described last month, the frequency
of the power line is divided by 60 to produce an interrupt
to the APPLE once a second. If for any reason the interrupt
input on the APPLE is disabled (i.e. for I/0 transfers) the
hardware counts the number of seconds and when the interrupt
input is re-enabled the clock will continuously generate
interrupts until the software count is properly updated.

There are two programs necessary to make the system behave
like a real-time clock.

l. We must have an interrupt service routine to
update the time stored in memory, and display
the new time on the screen each time an
interrupt occurs.

2. We also need a program to load in the
interrupt service routine, set the interrupt
vector to the routine, and set the initial
time in the clock.

The interrupt service routine must be written in machine
code and should be able to reside in memory with other
application programs. The assembly language program to do
this is shown in listing 1. The program is fairly flush
with comments to make it easy to understand, however for
those of you not familiar with assembly language I will
attempt to explain what is happening.

The first thing the program does is to perform a load at an
address that will pulse the device select line of the slot
that contains the clock. This will decrement by one the
count stored in the hardware. After that, the time stored
as hours, minutes, and seconds is increased by one second.
In order to make the arithmetic easy, the time is stored in
three bytes with each byte representing hours, minutes, or
seconds. The actual values are in BCD (binary coded
decimal). One of the nice features of the 6502 is the

ability to do decimal arithmetic simply by setting the
decimal flag in the processor status register. This is done
by executing an SED (set decimal mode) instruction. After
this is done all machine language arithmetic instructions
will do arithmetic as if the numbers are BCD. If a memory
location contains $69 ($ denotes a hexadecimal number) and
$3 is added to it, the result is $72, not $6C as it would be
in binary. Once the processor is set to operate in decimal
mode, 1 is added to the value for seconds and the new .value
is tested to see if it equals $60. If it does, then seconds
are set equal to 0 and 1 is added to the minutes value. The
same thing is done for minutes and hours, only hours are
checked for equality to $25. If you want twelve hour time
rather than twenty-four set this test equal to $13.

Now we need to put the new time on the screen. You should
all be aware by now that the APPLE takes an area of memory
and displays this on the screen for text. Text page 1 is
located at memory locations $400 to $7FF. We are going to
bypass all the usual APPLE output routines and store the
proper ASCII characters directly in memory so they appear on
the screen exactly where we want them.

Internally the APPLE uses characters expressed in standard
ASCII code but with the eighth bit set. If you try to put
ASCII characters on the screen without the eighth bit set
the characters appear in inverse video. This is just fine
for our clock and will serve to differentiate the time from
other printing on the screen. The program thus takes the
bytes for hours, minutes, and seconds, breaks them up into
two parts (tens and units digits), converts each digit to
ASCII, and stores them in the screen area of memory.
Finally colons are inserted between the hours-minutes and
minutes-seconds to separate them.

Now we can turn our attention to the second part of the
problem, initalizing the clock. A program called 'HCLOCK'
which handles this is shown in listing 2. This program is
compatible with either integer BASIC or Applesoft. The
first thing the program does is load in the machine language
routine using a series of pokes. When typing this in I
recommend that you use the Monitor to enter 'the machine code
into memory, verify that it is correct, and then use the
'COKE-POKER' program described on page 77 of the DOS 3.2
manual to convert it to a BASIC program. Line 230 modifies
-one byte of the machine code so that the clock may be put in
any slot by changing the value for 'SLOT' in line 210.

After loading the machine program HCLOCK sets the interrupt
vector at $3FE and $3FF to $300. Also the screen scrolling
area is modified so that the top line is left undisturbed.

Since the time is going to be put in the top line we don't

want it being scrolled off the screen everytime we print

4

something. The pokes in lines 310 to 330 set the clock time
to zero. When this program is first started the memory
locations for the time will contain garbage, to avoid
printing this on the screen they are zeroed first. The CALL
900 runs the two byte program attached to the end of the
machine language program which clears the interrupt disable
and allows the processor to respond to future interrupts.

At this point the 60 Hz should be connected to the clock
which will then start interrupting the processor and the
time will appear on the screen. Of course we don't have the
correct time yet, but that is taken care of by the next few
instructions. The user is prompted for hours, minutes, and
seconds and in each case the number is converted to BCD and
poked into the appropriate memory location.

As a final little goodie, the screen is erased and the
program is wiped out by the 'NEW' command. If you know how
to get the 'NEW' command into an integer BASIC program fine,
if not use Applesoft.

Now that we have the clock running you will find that
sometimes you don't want it on. The easiest way to turn it
off is to hit RESET. This sets the interrupt disable bit so
the processor will not respond to the interrupts, but the
clock is still producing them. This brings us to a little
problem. If after hitting RESET you want to get back to
BASIC without disconnecting the DOS you do a 3D0G;
unfortunately this also seems to clear the interrupt disable
bit and you're back to having the clock run. Thus the only
sure-fire way to stop the clock is disconnect the 60 Hz.

Well it's been fun, we found out how to build a simple clock
and hopefully learned something about the interrupt
structure of the APPLE. If I may inject a personal opinion
here; one of the most important functions of a computer is
to increase one's knowledge. To this end I prefer to do

_ things myself rather than buy canned software or hardware.

I also view a magazine or newsletter not so much as a source
of knowledge but as a source of IDEAS that encourages the
reader to extend his own horizons.

0300- AD AQ

0303- F8

0304- 18

0305~ AD 90
0308- 69 01
030A- 8D 90
030D- C9 60
030F- DO 2a
0311- A9 00
0313~ 8D 90
0316~ 18

0317- AD 91
031a- 69 01
031c- 8D 91
031F- C9 60
0321~ DO 18
0323~ A9 00
0325~ 8D 91
0328- 18

0329- aD 92
032C~ 69 01
032E- 8D 92
0331- C9 25
0333~ DO 06
0335- A9 01

Co

03
03

03
03
03

03
03
03

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380

RRRRRKXARAXAAKRRA A A RA R A A kkXkdkkhk

*
*

*
SOFIWARE CLOCK ROUTINE *

USING 1 SEC HARDWARE INTERRUPTS

*

*

Ahkkkkkhhkhkhhkhkkhhhhhhhkhkhhkkkhkthik

*

* % % % % ¥ ¥ ¥ %

DEVS
ACC
*
SCRN
*

*

SECS

MINS
HRS

*
*
*
*

*
*

TICK
*

1390.

1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570

0337- 8D 92 03 1580

)

TIME IS STORED IN DECIMAL MODE
TWO DIGITS PER BYTE

THIS PROGRAM INCREMENTS THE TIME
AND DISPLAYS IT IN THE UPPER RIGHT
HAND CORNER OF THE SCREEN

«EQ $COAQ SLOT 2

+EQ $45 MONITOR SAVES ACC HERE
WHEN INTERRUPTED

.EQ $420 POSITION ON SCREEN
FOR TIME TO APPEAR

.EQ $390

B0 $391

+EQ $392

INTERRUPT COMES HERE

.OR $300

PULSE DEVICE SELECT LINE

LDA DEVS

SED SET DECIMAL MODE
CIC CLEAR CARRY

LDA SECS :

ADC #01 ADD 1 TO SECS
STA SECS PUT BACK IN SECS
Q1P #560 TEST = 60

BNE DISP IF NOT, GOTO DISP
LDA #0 SECS=60, STORE ZERO
STA SECS IN SECS

CLC CLEAR CARRY

LDA MINS

ADC #01 ADD 1 TO MINS

STA MINS PUT BACK IN MINS
P #$60 TEST = 60

BNE DISP IF NOT, GOTO DISP
LDA #0 MINS=60, STORE ZERO
STA MINS IN MINS

CLC CLEAR CARRY

LDA HRS GET HOURS

ADC #01 ADD 1 TO HOURS
STA HRS PUT BACK IN HOURS
Q1P §$25 EQUAL TO 25

BNE DISP IF NOT, GOTO DISP
LA #1 HRS=25, STORE ONE
STA HRS IN HOURS

033A-

033B-
033E-
033F-
0342-
0345~
0346-
0349~

034C-
034F-
0350~
0353~
0356-
0357-
035A~

035D~
0360~
0361-
0364-
0367~
0368-
036B~
036E-
0370~
0373-

0376~
0378~

0379-
037A-
037B-
037C-

037D~
037F-~
0380~
0382-

0383~

D8

AD 90
48

20 7D
8D 27
68

20 79
8D 26

AD 91
48

20 7D
8D 24
68

20 79
8D 23

AD 92

48

20 7D

8D 21
3

20 79
8D 20

A9 3A

8D 22
8D 25

A5 45
40

55

4a

29 OF
18
69 30

00

03

03
04

03
04

03

03
04

03
04

03

03
04

03
04

04
04

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
185¢
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2162
2170

*

* ¥ % ®

DISP

* % % %

* % * * %

ASC

* % % *

ASCI

»

CLD

CLEAR DECIMAL MODE

THIS PART OF THE PROGRAM PUTS
THE TIME ON THE SCREEN

LDA SECS
PHA

JSR ASCI
STA SCRN+7
PLA

JSR ASC
STA SCRN+6

LDA MINS
PHA

JSR ASCI
STA SCRN+4
PLA

JSR ASC
STA SCRN+3

LDA HRS
PHA

JSR ASCI
STA SCRN+1
prA

JSR ASC
STA SCRN
LDA $$3A
STA SCRN+2
STA SCRN4+5

GET SECONDS

SAVE TEMPORARILY

MAKE IT ASCII

PUT ON SCREEN

RECOVER SECS

MAKE UPPER DIGIT ASCII
PUT ON SCREEN

GET MINS

SAVE IT

MAKE LOWER DIGIT ASCII
PUT ON SCREEN

RECOVER MINS

MAKE UPPER DIGIT ASCII
PUT ON SCREEN

GET HOURS

SAVE IT

MAKE LOWER DIGIT ASCII
PUT ON SCREEN

RRCOVER HOURS

MAKE UPPER DIGIT ASCII
PUT ON SCRN

PUT COLONS ON SCRN

RESTORE ACCUMULATOR
AND RETURN FROM INTERRUPT

LDA ACC
RTI

ACCUM STORED BY MONITOR

SHIFT ACC RIGHT 4 BITS TO GET
UPPER DIGIT INTO LOWER DIGIT

POSITION

LSR
LSR
LSR
LSR

NOW MASK OUT UPPER DIGIT AND
AND CONVERT TO ASCII

AND #SOF
CLC
ADC #$30
RTS

BRK

KEEP 4 LSB
CLEAR CARRY
ADD $30

CLEAR INTERRUPT DISABLE

)

2180 *

0384~ 58 2190 CLI
0385~ 60 2200 RTS

2210 *

2220 *

2230 .EN
SYMBOL TABLE
DEVS COA0 ACC 0045 SCRN 0420
SECS 0390 MINS 0391 HRS 0392
TICK 0300 DISP 0338 ASC 0379
ASCI 037D
:$300. 385

0300- AD AD CO F8 18 AD 90 03
0308- 69
0310- 2»
0318- 91
0320- 60
0328- 18
0330- 03
0338- 92
0340- 7D
0348- 03
0350- 20
0358- 79
0360- 48
0368- 20
0370- 8D 22 04 8D 25 04 A5 45
0378- 40
0380- 69

.

01 8D 90 03 C9 60 DO
A9 00 8D 90 03 18 AD
03 69 01 8D 91 03 C9
DO 18 A9 00 8D 91 03
AD 92 03 69 01 8D 92
C9 25 D0 06 A9 01 8D
03 D8 AD 90 03 48 20
03 8D 27 04 68 20 79
8D 26 04 AD 91 03 48
7D 03 8D 24 04 68 20
03 8D 23 04 AD 92 03
20 7D 03 8D 21 04 68
79 03 8D 20 04 A9 3A

4n 47 4A 4A 29 OF 18
30 60 00 58 60

>LOAD HCLOCK
>LIST

100
110
120
130
140
150

160
170
180
190

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

REM THIS PROGRAM LOADS IN THE
REM MACHINE LANGUAGE CLOCK

REM ROUTINE THAT COUNTS ONE

REM SECOND INTERRUPTS FROM THE
REM HARDWARE COUNTER.

REM PRINTS THE TIME IN THE UPPER

REM RIGHT HAND CORNER AND

REM MODIFIES THE SCROLL WINDOW.
REM

REM SET SLOT FOR SLOT CLOCK IS I

N

REM CORRECTS MACH. CODE
SLOT=2

GOSUB 580

POKE 769,128+SLOT*16

TEXT : CALL -936

REM SET INTERRUPT VECTOR
POKE 1022,0: POKE 1023,3
REM SET WINDOW TOP
FOKE 34,1

CALL -936

REM ZERO CLOCK

FOKE 912,0

POKE 913,0

FOKE 914,0

REM CLEAR INTERRUPT DISABLE
CALL 900

PRINT "TURN CLOCK ON NOW"
PRINT

REM SET CLOCK .
INPUT "HOURS (1-24) ", T
GOSUB 510

POKE 914,T

INPUT "MINUTES (0-59) ",T
GOSUB 510

POKE 913,T

INPUT "SECONDS (0-59) ",T
GOSUB 510

POKE 912,T

CALL -936

NEW

END

510
520

530
540

550
560
570
580

590

600

610

620

630

640

650

660

670

680

690

- 700

710

720

REM CONVERT TIME TO BCD

A=T/10

T=T+A*6

RETURN

REM

REM POKE MACHINE CODE TO

REM COUNT INTERRUPTS

POKE 768,173: POKE 769,160:
POKE 770,192: POKE 771,248

: POKE 772,24: POKE 773,173

: POKE 774,144: POKE 775,3:
POKE 776,105:

POKE 777,1: POKE 778,141: POKE
779,144: POKE 780,3: POKE 781
,201: POKE 782,96: POKE 783
,208: POKE 784,42: POKE 785
,169:

POKE 786,0: POKE 787,141: POKE
788,144: POKE 789,3: POKE 790
+24: POKE 791,173: POKE 792
+145: POKE 793,3: POKE 794,
105:

POKE 795,1: POKE 796,141: POKE
797,145: POKE 798,3: POKE 799
,201: POKE 800,96: POKE 801
,208: POKE 802,24: POKE 803
,169:

POKE 804,0: POKE 805,141: POKE
806,145: POKE 807,3: POKE 808
,24: POKE 809,173: POKE 810
,146: POKE 811,3: POKE 812,
105:

POKE 813,1: POKE 814,141: POKE
815,146: POKE 816,3: POKE 817
,201: POKE 818,37: POKE 819
,208: POKE 820,6: POKE 821,
169:

POKE 822,1: POKE 823,141: POKE
824,146: POKE 825,3: POKE 826
,216: POKE 827,173: POKE 828
,144: POKE 829,3: POKE 830,
72

POKE 831,32: POKE 832,125: POKE
833,3: POKE 834,141: POKE 835
,39: POKE 836,4: POKE 837,104
: POKE 838,32: POKE 839,121

POKE 840,3: POKE 841,141: POKE
842,38: POKE 843,4: POKE 844
,173: POKE 845,145: POKE 846
,3: POKE 847,72: POKE 848,32

POKE 849,125: POKE 850,3: POKE
851,141: POKE 852,36: POKE
853,4: POKE 854,104: POKE 855
,32: POKE 856,121: POKE 857

r3:

POKE 858,141: POKE 859,35: POKE
860,4: POKE 861,173: POKE 862
,146: PCKE 863,3: POKE 864,

72: POKE 865,32: POKE 866,125

POKE 867,3: POKE 868,141: POKE
869,33: POKE 870,4: POKE 871
,104: POKE 872,32: POKE 873
(121: POKE 874,3: POKE 875,
141:

POKE 876,3Z: POKE 877,4: POKE
878,169: POKE 879,58: POKE
880,141: POKE 881,34: POKE
882,4: POKE 883,141: POKE 884
s aTs

POKE 885,4: POKE 886,165: POKE
887,69: POKE 888,64: POKE 889
,74: PCKE 890,74: POKE 891,
74: POKE 892,74: POKE 893,41
FOKE 8Y4,15: POKE 895,24: POKE
896,105: POKE 897,48: POKE
898,96: POKE 899,0: POKE 900
,88: POKE 901,96:

730 RETURN

740

END

Washington Apple Digest

by Dave Efron

One of the useful services of a users group
is the trading of information, to help mem-
bers benefit from the experiences and
knowledge of others. No single person can
read every article written on a subject,
nor can anyone be aware of everything
written that may be of special interest.
One of the attractions of a computer users'
grouﬂ is the opportunity to find short-cuts
in the process of learning how to usz com-
puter equipment effectively, and this is an
attraction shared by the experienced as
well as the new users.

Oftentimes we pick up an_old issue of a
magazine and_ spot an article of interest
which had earlier escaped notice. "if only
I had seen this before!' often applies.
Sometimes we pass up articles because as
new uers we see no relevance in an item,
until later when we realize the usefulness
of the information to something we are now
doigg. Most often, however, we never sub-
scribe to everything and we cannot find the
time to review the contents of journals in
the computer stores' racks.

A Call for A.I.D.

An Apple Information Digest could be a reg-
ular feature of the Washington Apple Pi
Newsletter. The proposed concept would set
as its objective the review of most (all,
if possible) of the journals, magazines
newsletters, company-provided technica
notes, books, and manuals that publish in-
formation on_ the Apple computer line and
products designed for it.

A review would be a simple summary of the
topics covered and the reviewer's evalua-
tion of the article. It might also give a

judgment of the article's appeal to differ-
ent types of Apple users, for example, the
novices, the pro's, the intermediates, the
amers, the scientists, etc. A few sen-
ences would be enough, unless the reviwer

desired to devote more attention to the ar-
ticle.

Readers would then know where to find tech-

nical or %ypllcation iniormation specific
to individual interests. An extension of
this service might be to re-print articles
of wide interest in the Newsletter if we

gave the author's expressed permission to
0 so.

A Call for Volunteers

Feedback on this concept indicates that a
project like this would be appreciated by
many of our members, but it can work only
if many of our members participate. A com-
mittee of reviewers is required to scan
publications and abstract articles of in-
terest to Apple users. One or more members
would be assigned to review and prepare ab-
stracts for each source every month. With
enough interest in this project, there may
be several volunteers per source who could
share the effort by dividing the table of
contents or alternating months.

Organization Meeting

A meeting to organize this Yroject.qill be
held at the re%u arly scheduled meeting of
Washington Apple Pi, on June 28. Those who
are interested in participating are en-
couraged to attend, but may indicate their
interest by calling the cIub's telephone
number instead (301 468-2305) to leave a
recorded message. If the turn-out is good,
this concept will turn into an on-going
and useful service to our members.

MEM| [CTLR =]
= DISK
cTLR| [cPu {]
UIDED
DISPLAY

WO

KEYBORRD

Dealer's Corner

Arrle Writer to Text File Conversion
Faul A. Sand
Comrputerland/Rockville

Have anwg of the followire thines ever harrened to wou?

- You want to ecreate (or chance or examine) a temt file
orn disk that is to be read as data by a3 Easic rproecram. Eut
ol dori't necessarily want to write another erocram to do
it

- You want to create (or modify or examine) arm EXEC
file on disks but (asain) yvou don't warmt to write a rFrocram.

- You want to chance the name of 3 variable or a3 line
number reference everuvwhere it arresrs in 3 Frocrams a3
laborious and error-rrone task if done by hand.

= You want to rut lower case letters imto 2 eroeram or
data file.

- You want to rut 8 rroeram listine into the text of an
article vou are writing.

- You want to cet @ printed listimc of a2 rrocram (cr
data file) in other than "standard® format.

This article describes two small and simrle Arrlesoft Frograms
that work in condunction with Arrle Writers the word rrocessing
software from the Good folks at Arrle Comruter. Ome rrogram (ETOT)
will cornvert 2 file Gemnerated by Arrle Writer into 2 normal sequentizl
text file., The other (770&) rerforms the inverse orerations
tramslating & text file into a8 file that cam be read by Arrle Hriter.
These two rroerams will sllow wou to do a2ll the thines mentioned shove
(arnd more) auickly amd easilwy,

Text files are roterntially rowerful tools to solve sroerammin
rrobhlems. They are easily read and written bw Easic rroerams. Easic
rrogram text cam be saved znd recovered from text file format as well.
The main obstacle to wider use of text files is the limited
availahility of Good utility software that will work with them. Hith
the additien of these rroeramsy Arrple Writer becomes a2 rowerful editor
of rroeram and date files in addition to its normal role of word
rrocessor. (Those interested inm 2 more comrlete descrirtion of the
thines Arrle Hriter cam do should refer to the excellent review by
Fhillir Wright in the February 1980 Arrle Fi.)

In order to use Arrle Writer to edit data files (or anv
seauential text file) the rroerams civern here are used to translate
the text files to arnd from Arrle Writer format. The rroeram TTOE will
tramnslate a temt file mamed "XYZ" into the Arrle HWriter file
"TEXT.XYZ", Similarluy ETOT will take the (rossibly edited) Arrle
Writer file "TEXT.XYZ" ard creazte the eaquivalent temxt file "XYZ'. Of
courses Arrle Writer can also be used to create the text file
initiallw. : 9

The rroecram offers the ortion of convertine lower case in the
Arrle UHriter file to urrer case in the text file. This ortior should

rrobably

be sccerted if one is editinG a2 eproGram texts it a3llows the

rrocram to be edited usirne lower case charactersy which are easier to
ture into Arrle Writer than urrer case.

Here'is the TTOE rrocram?

This
to lower

dim x7%¢127)
de$ = chré$(4)
inrut *File to be converted?i®; fi¢
inrut *Convert urrer to lower case?(Y/N)$®: an$
if an$ = "Y" then ¢S5 = 128! o to 170
if am$ = *N" ther % = —-64! co to 170
co to 130
for i = 32 to 63
wA(i) = 1 + 192

next i
for i = 64 to 9%
#wA(i} = 1 + ¢9

; mext i

for i = 96 to 127
®4(i) = 1 + 964
next i
wZ(13) = 141
rov.e 64300y 19.% 3 = 6401
rrint dos$s “"orern "3 fi$
rrint dc$i "read ": fi$
orn err o to 34¢C
cet ic$
roke ay MZA(asc(ic$))
a=3a8+ 1! 6o to 310
if peek(222) <* O then rrint "Ead Error'! end
print dess "cicse "3 fi¢
roke ay 96 -
1l = a3 - 6399
rrint de$s *bsave text.®s fiés "»236400+1%% 1
rrint 1 - 23 ° characters®
end

Frrocram has the ortion to convert urrer case in the text file
case in the Arrle Writer file in order to be comratible with

the corresronding ortion in BTGT.

Note that nmeither rrosram blows ur if handed a3 character it
doesn't know how to translate. An illecal character is transformed
into an ASCII '0' (null) character by both erroGcrams.

10

/ﬁ\

Procram editine with Aprle Writer is only slichtly more comrlex.
A Basic proeram is first "cartured® on disk 2s a3 text file (see
below)? thern the text file is edited as above. The edited Arple Writer
file is converted back to texty then EXECed back into memoruy as a
FTOGT3m. (See the DOS 3.2 Manualy Charter 7)

Arrle Writer files are binary files loaded to and saved from
memory startine a3t location 6400 (decimal). The first bute of the file
is alwaus a3 191, The text followssy one bute rer character. The last
bute is 94y an end-of-file mark. "Lecal" characters in Arrle Hriter
are most of the rrintable ASCII characters rlus carriace return. What
makes the conversion nomn—-trivial is that the text is not stored in
ASCTT format. But (fortunstelu) simele rules Give the correct
transformations - see the rroceram listineGs.

Here is the BETOT errogram?

100 dim xZ(255)

110 dcd = chrs(4)

120 imerut "File to be converted?i"d fi$

130 inrut "Convert lower to urrer case?(Y/N)?!"$% an¢
140 if an% = °Y® then ¢5 = -128¢! o to 170

156 if arm$ = °N® then ¢85 = -96! o to 170

160 o to 130

176 for i = 0 to 31

180 MAC(L) = 1 + 64

190 rmext i

208 for i = 32 to 63

210 ®Z(i) = i

220 next i

230 for i = 19
240 $Z (1)
25C next i

260 for i =
276 MZ(1)
280 next i

290 »4{141) = 13

300 print dc$’ "bload text.*s fis

310 srint dc$s "oren "3 fid

326 print dec$’ "delete "4 fi¢

330 print dcés "oren "% fi¢

34¢ print de$s "write "3 fi¢

350 a = 6401

340 ch = peek(ad)! if ch = 96 then 390
370 rrint chr$i{x%Z(ch))}

380 8 = a + 1% 6o to 360

390 rrint dc%? "close "¢ fTi¢$

400 erint a3 - 64G13 " characters®

410 end

R

+
)

e
X
W

c

&3
&

¢

(a]

22
=i -1

[A

0 M

11

A third proGeram micht be useful to ansone attemetirnc this sustem!
the followine can be stored as a text file under the name "CAFTURE®:

TP OITE . o o o o o e i e e 8 e
rem Carture rrogram as text file
T OMI o o = e o o o o e o o e et . s e e e e e

0 d$ = chr$(4)! input °Text file namet®s £$¢ print dé;
*oren"s f$! rrint dé: “delete®? f$! print d$; *oren®s fé$¢
print d$f "write's f$! roke 33y 30! list 1, 43999! erint d%;
‘close"s ¢! text! end

rUn

The rurrose of this semi-proeram is to automatically save the
Arrlesoft rroegram currently inm memorw as a3 text files the user only
havirme to ture "EXEC CAFTURE® and surrlwy a3 name under which the file
is to he saved. (Thie is essentially the rrocess emrlained in the DOS
3.2 Marual rr. 76-77,) Desrite arrearances: everuthins from the "0* to
the "end® statemert is entered as ome lime, EXECing the CAFTURE file
causes the proeram in memory to have 2 new line 0y which is then
immedistely executed by the °*RUN® command, (The REM statements are
ignoreds of course.) The new line 0 asks the uwser for the file name
and does 211 the work of actuslly storine the file. A version that
would save bhoth Intecer and Arrlesoft rrograms as text files would be
orilg slicghtly more difficult to write.

fs arnother examrle of how these rroerams could bhe of bermefity
consider the Arrle owrner who recularly uses his corruter a3s 3 *dumb®
terminal to access 2 timesharine swstems A much more sensitle (ard
ecoromical) arrancement would bhe to let the Arrle do some of the mest
time-consumine wark. Software for transferring Arrle text files to and
from The Source is already widely availables 2 more General rrocram
for use with army timesharine sustem wouldrm't be too difficult., For
evamreley program source files could be ererared on the Arrle using
Arrle Writer armd later "urloaded' to the timesharine sustem for
runniing. Or 8 sectior of 2 larce dats hase om the bie comruter could
be "downloaded® to the Arrle for rrintine (seain usine Arrle Writer)

or &rocessinGg by 8 Basic Froeram.

BLAISE AWAVY!

Dan Paumar meels M. Pascal!
Lower Case Inpul for Your Pascal Arple

by
Dr, HWo

Last sonth we talked sbout how to dume the hi-res screen to 3 Parer
Tider, We’re not finished uet! Howevers the demand for an explanation of how
to det lowercase inrul (1) using "shift-M" and the Paumar chir was more than
could be igsnored so I thousht we would take that up this month. The
discussion will serve as an introduction to the Arrle BIOS.

X 1 X

Every imrleaentastion of UCSD Pascal reauires an interrreter and a RIOS
to surrort it. The interereter translates P-codes the code emitted bu the
Pascal coarilers into the host machine’s native codes and the BIOS, Basic I-0
Subsuystems handles I-0 to the devices connected to the sustea. The neat thing
about the Arrle’s imrlementation is thal botlh the interrreter and the BIOS
can be rewritten bz the rrogrammer!

The Arrle’s interrreter and BIOS share a common 4k block of RAM
addressess $D0000 to $DFFF, via memory swarrindg. The prodrammer can execute
this swar bu flirrind soft switches at $C083s "BIOSIN", and $COBB, *BIOSOUT®.
One reference to BIOSIN swars the BIOS in and two succesive references write
enable it. Similarlys references to BIOSOUT sawr the interrreter into memory,
Althousgh wou can modifs both the inlerrreter and the BIOS, its likelw wou’ll
want to fool only with the BIOS. Documentation for il is svailable from Arrle
or from the clubs the interpreter is eproeprietaruy and decumentation is
unavailable.

The interrreter and BIOS work todgether as follows: Normallus the
interrreter is in memory. Howevers when 3 call for I-0 is made from a3 Pascal
rprodrams Lhe interrreter determines which device is being calleds formats the
outdoind or incoming datas and calls the BIOS. The BIOS is swarred in (and
the interrreter out)sy 3 Juar to the locations reserved for I-0 through the
selected device is made and the oreration is rerformed. When all is dones the
BIOS returns control to the interereter.

When the BIOS takes over it Knows that it is to read or write to s
certain device. Before actualls executind the orerations howeversy it first
determines how the device is interfaced with the sustem. As currentlyu
confidureds the interereter-BIOS combination can recosgnize disksy printerss
remote I-0 devices and consoless rrovided thes are interfaced via Arrle brand
perirheral cards or "foreidn” cards whose set-up coincides with an Arple
card. (That’s one reason sour rPascal Arrle doesn’t recodnize scur D.C. Hawes
Micromsodes.) Fortunatelys since sou can rewrite the BIOS (within limits--
sepace is at a3 premium) wou can interface foreisn cards.

Assuming the Apple recodnizes the card usou’re usinds it does one more
thing before taking care of I-D! it polls the console Kesboard via the
routine "CONCK” located al $Dé81. CONCK is the Keusboard inpul routine and its
here that our search for lower case inrut bedins.

CONCK sters off by pushind the status of the machine and testing the
13
A

Keuboard for 3 character. If it finds nones the routine is overs if there is
a charactery the fun begins! If CONCK finds certlain control characters
{AryZyFyS) it does its thind, such as flirpind the rades of the screens and
exits, If it finds ans other characlers it 3dds it to the 78 character
keshoard buffer, In the srecial case of control-K» it convertis it to a left
bracket, Whenever oulrul to the console is reecuesteds Lhe console write
routiney "CRWRITE"» sends the seprrorriste characlter from the buffer to the
screeny setting the urrer case bit of the character on the wau.

] X]

So how does any of this det us lower case inrul or cutput? There are
three thinds we aust do! install a3 Paumar chiré chande the shifimask so that
characters are not automaticalls converted Lo urrer case on their wau to the
screens and ratch into CONCK 3 prodram to 3llow case shiftindg on inrut via
"chift-M". The secretl to patchind is to mske use of 3 small block of free
RIOS srace located sl $DARE to $DB7F inclusive (194 butes).

{Randall Hude referred to Lhese sddresses in his Aprle Orchard article
_"Connectind with the UCSD BIOS" sauind that “the free aemoryd....is not reslly
free,” I’ve nol found that to be true. Furthermore» his techniaue for lower
case inrut reauires 3 ROM+ board and rewiring the Kesboard. I don’t have such
8 boardy and I’s messy with solder.)

M is one of onlu three alrha Keus on the Arrle that can acluslly be
shifted, (Whu?! Whu? Whu!) We use it here Lo set and resel bit 5 of location
*SHIFTFLAG"y» which we have located at $DABE. Incoaing characlers are EORed
with this bute Lo effect case shiftind. You mau recall that shifi-M is used
for *"1° on 3 raw Arrle. I simrly dave that resronsibilits to control-J in my
ratch,

So..41 the ratch to CONCKs listed below as .PROC LOWINPUTs works as
follows! CONCK is rolled and entered Just as above. If it finds no character
the fun is over. Howevers if il does find a character, it immedizately JHPs
to LOWINPUT at $DARF, LOWINPUT checks to see if an alrha characters hex value
3t least 40y was founds shift-M included. If soy LOWINPUT Jusrs to SHIFTYEST
and tests for Lhe rresence of shift-M, If rresents bit S5 of SHIFTFLAG is
set/reset and a3 JMF back into CONCK at "DONECK"» $D71Ds is made to finish off
the console rolls if nots the prodgram branches to SHIFIT where the inrut
character is EORed with SHIFTFLAGs thus choosing between urrer and lower
case. After all thisy LOWINPUT JHPs back into CONCK at the location
“NOTFLUSH", $D706s to store the character in the console buffer. Note that
only the alrha Keus are affected by this routine’ numeric and other non-alrha
charactersy excert "2" and those mentioned belows are unaffected.

1f a non-alrha characler was found uron entering LOWINPUTs the prodram
tests for 3 contrel characters used for srecial characters! control-K for
left sauare bracket and ils lower case counterrarts lefl curlu brackets
control-J for right sauare bracket and curly brackets and control-1 for *i®
and "\". (You could chande this sets add more characters if uvou like.) If one
of these is found+ the rrosram branches to SHIFTITS if nots it JMPs back
into CONCK 3t "CONCK2"s $D6AAy to continue testind for more control
characlters. Processind from this point continues as above.

X s]

My method for implementing LOWINPUT is to incorrorate il into the
procedure "SYSGEN" which is hosted bu the Pascal prodraa “startur” which is
run stomatically sl boot time by virtue of being stored in the SYSTEM.STARTUP
file, SYSGEN is simrle! It .starts off by suzrrind in the BIOS and write

1
p

enablind it. Thens» it loads the prodgram LOWOUTs which enables lower case
outruty followed bu LOWINPUT. Finallyy the prodgram patches LOWINPUT and CONCK
togethery initializes the shift flad for uprercsse inruls swars tLhe
interrreter into memory anc returns to the Pascal calling prodgras.

¢ § |
The effects of LOWINPUT are described in the following {asble!
Bit 5 of SHIFTFLAG

Reset Set
Alone CTRL Shift Alone CTRL Shift
Key e sSszSTsESssT=s=ssE
1! 1 ! 1 1
2* 2 . 2 0
?) 9) 9)
0 0 0 0 0
H H X $ 4
it i + H +
no ? / ?
A A A 8 F
H H H h h
I I \ 1 i H i
J J b J J)} J
K K L K K { K
. L L 1 1
M] {setl> B {reset’>
Nt N t n ~
(1] 0 0 [o
P@ p e P A
Q g a e (]
Z y4 Z z z
PAGE - O
Current memory available! 10142
00001 +ABSOLUTE
0000: D704 NOTFLUSH .EQU 0D706
0000! D71D DONECK .EQU 0D71D
0000 DABE SHIFTFLAG .EQU ODABE
0000 D681 CONCK EQU 0D481

0000! D6AA . CONCK2 +EGQU QD6AA
00001 _
2 blocks for rrocedure code 9355 words left

15

1

PAGE - 1 LOWINPUT FILE $SYSHODS

00001 +PROC LOWINPUT
Current meaors available! 9377
0000 +ORG ODABF
DABF!
DABF! C9 40 CNP $40 3ALFA CHARACTER?
DAC1! BOXx BCS SHIFTTEST SYES. TEST FOR SHIFT M
DAC3!
DAC3: C9 OB CMP $0B #CONTROL~-K?
DACS! DOxx BNE NOTK
DAC7! A9 SB LDA #5B sL SOR BRACKET
DAC?! DOxx BNE SHIFTIT JALWAYS TAKEN
DACR!
BACS% 00
DACR! C9 0A NOTK CHP #0A $CONTROL-J?
DACD! DOxx BNE NOTJ
DACF! A9 5D LDA #5D #R SGR BRACKET
DAD1! DOxx BNE SHIFTIT JALWAYS TAKEN
DAD3!
DACDx 00
DAD3: C9 09 NOTJ CMP $09 $CONTROL~-I%
DADS! DOXx BNE NOTI
DAD7! A9 5C LDA 35C #BACKSLASH
DAD?! DOxx BNE SHIFTIT JSALWAYS TAKEN
DADR!
DADSX 00
DADB! 4C AADG NOTI JMP CONCK2
DADE!
DAC1X 00
DADE! C9 5B SHIFTTEST CMP #5D FSHIFT M?
DAEO! DOxx BNE SHIFTIT
DAE2} A9 20 LDA $20
DAE4! 4D BEDA EOR SHIFTFLAG
DAE7! 8D REDA STA SHIFTFLAG
DAEA} 4C 1DD7 JMP DONECK sDONE CHECKING FOR
DAEDR! 1SPECIAL CHARACTERS
DAED!
DAEOX 00
DAD9X 00
DAD1X 00
DAC?x 00
DAED! 4@ BEDA SHIFTIT EOR SHIFTFLAG
DAFO! 4C 064D7 JMP NOTFLUSH 3STORE CHARACTER
DAF3: #IN CONSOLE BUFFER
DAF3) +END
PAGE - 2 LOWINPUT FILE:SYSMODS SYMBOLTABLE DUMP
AB - Absolute LB - Label UD - Undefined MC - Macro
RF - Ref DF - Def PR - Proc FC - Func
PB - Public PV - Private CS - Consts
CONCK AB D481: CONCK2 AB DGAAI DONECK AB D71D! "~ LOWINPUT PR ----!

NOTFLUSH AR D704! NOT LB DADB:
SHIFTFLA AB DABE!

NOTK LB DACB:

NOTJ LB DAD3

SHIFTIT LB DAED! SHIFTTES LB DADE!

16

7

PAGE - 1 SYSGEN FILESSYSGEN

0000} +PROC SYSGEN

Current memory availablel .9617

0000 i

0000! i

0000} i

0000 C083 BIOSIN .EGU 0C083

0000 COBB BIOSOUT .EGU OCOBB

0000: D&81 CONCK +EQU 0D4B1

0000! D&AA CONCK2 .EQU O0D&AA

0000! DBES LONOUT ,EQU ODSES

0000! DARF LOWIN +EGU ODABF

0000 DABE SHIFTFLAG.EQU ODABE

0000: D&A4 PATCH +EQU 0D6A4

0000

0000 AD 83C0 LDA BIOSIN

0003 AD 83CO LDA BIOSIN

0004}

0006 A0 00 LDY #00

0008! B? 1%x XLOWOUT LDA PRG1»Y

C00B! 99 EBDB STA LOMOUT,Y

000E: CB INY

000F! CO 02 CPY $02

0011 90FS : BCC XLOWOUT

0013!

0013: A0 G0 LDY %00

0015! B? 33X XLOWIN LDA PRGB»Y

0018! 99 BFDA STA LOWINsY
*001B: C8 éﬁ; -

001C: CO 34

001E! 90FS BCC XLOWIN

0020
0020% A0 00 LDY #00

0022} B9 3118 XPATCH LBA PRG9»Y

0025! 99 A4Dé STA PATCH»Y

0028: €8 INY

0029% CO 03 CPY %03

002B: 90FS BCC XPATCH

002D}

002D: A9 00 LBA #00

002F! 8D BEDA STA SHIFTFLAG FINITIALIZE
0032! $SHIFTFLAG
0032!

0032} AD 8BCO LDA BIOSOUT

0035 60 RTS

0036}

00098 3600

0036: BO 02 PRG1 +BYTE 0B0,02 $BCC 44
0038

0015% 3800 ‘

0038 C9? 40 PRGB " +BYTE 0C9+40 §CHP 340
003A: BO 1B «BYTE: 0BO» 1B §BCS SHIFTTEST
003C: C9 0B +BYTE 0C9+0B JCHP #0B
003E! DO 04 +BYTE. 0D0+04 $BNE NOTK
00401 A9 SB _\BYTE 0A9SB iLDA #5B
0042! DO 22 «BYTE 0D0,22 $BNE SHIFTIT

PAGE - 2 SYSGEN FILE?!SYSGEN
00441 C9 0A +BYTE 0C9:0A 1CHP #0A
0046: DO 04 +BYTE 0D0s04 iBNE NOTJ
0048! A9 SD +BYTE 0A9,SD iLDA #5D
004A! DO 1A +BYTE 0DOs1A iBNE SHIFTIT
004C: C9? 09 +BYTE 0C9,09 iCKP #09
004E! DO 04 +BYTE 0D0,04 iBNE NOT I
0050! A% SC +BYTE 0A9,5C iLDA #3C
0052¢ DO 12 +BYTE 0B0»12 $BNE SHIFTIT
0054! 4C AA D6 +BYTE 4C,0AAs0D6 FJHP CONCK2
0057¢ C9 SD +BYTE 0C9,5D iCMP 45D
0059 DO 0B +BYTE 0DO,0B iBNE SHIFTIT
005B: A9 20 +BYTE 0A9y20 iLDA #20
005D! 4B BE DA +BYTE 4DsOBE,ODA FEOR SHIFTFLAG
0060: 8D BE DA +BYTE 8DsOBE,ODBA iSTA SHIFTFLAG
0063} 4C 1B D7 +BYTE 4C,1D,0D7 3JMP DONECK
0066 4D BE DA +BYTE 4D,0BE,ODA EOR SHIFTFLAG
0069 4C 06 D7 +BYTE 4C,06,0D7 3JMP NOTFLUS
004C!
00233 4C00
ggggi 4C BF DA PRGY +BYTE 4C,OBF,ODA ;JMP LOWIN
006F§ +END
PAGE - 3 SYSGEN FILE!SYSGEN SYMBOLTABLE BUNP
AB - #bsolute LB - Label UD - Undefined - MC - Macro
RF - Ref DF - Bef PR - Proc FC - Func
PB - Public PV - Privale CS - Consts
BIOSIN AB CO83! BIOSOUT AB CO8B! CONCK AB D4B1:{ CONCK2 AB DéAA:
UT AB DBES! PATCH AB DéA4
PRGY , LB 0036! PRGS LB 0038: PRGY? LB 006C: SHIFTFLA AB DABE!
IN LB 00157 XLOWOUT LB 0008
XPATCH LB 0022;

PROGRAM STARTUP3

PROCEDURE SYSGENSEXTERNAL

BEGIN

SYSGEN

PAGE(GUTPUT)i

GOTOXY(0+s5)7

WRITELN(‘WELCOME TO DR. W0‘‘S CUSTOMIZED APPLE’)}
WRITELNC ‘FEATURING LOWER CASE INPUT AND OUTPUT’)i
WRITELN;:

WRITELN(’USE "SHIFT-MN" TO SHIFT CASES’)i

WRITELN;

WRITELNC ‘PLEASE USE THE FILER TO SET THE DATE!’)}
END.

LOKIN

SYSGEN

[
—
AB DABF: LOW
PR --—-tXLO

YOUR AD
HERE
?

RATES 330 full
$15 half
$ 10 quarter
§ 6 cighth

Q-

"

WASHINGTON APPLE PI
MAIL ORDER FORM

————————— -

Washington Apple Pi now has a program library, and disks are available for
purchase by anyone. The price to members is $5.00 per disk, and 33.00 to
non-members, hese disks are chock full of exceptional programs - the
utilities are especially useful. The games are some of the best - not just

simple and uninteresting ones. You ma{ pick them up at any meeting or have

them mailed for $2.00 per disk additiona They will come in a protective foam
diskette mailer,

Also available for purchase by members at a discount price is the new AP
EEFERENCE MANUAL (rgplaces thg Red Reference Manual).p The Erice of ghispggnugi

s $17.00. You may pick it up at a meeting or have it mailed to you at no
extra charge.

Amount

1. New APPLE II REFERENCE MANUAL - $17.00 each

2. PROGRAM DISKETTES
Members: 5.00 per disk picked up at meeting
.00 mailed to you...
Non-members: .00 per disk picked up a meeting
$10.00 mailed to youus.

Volume 1--Utilities I ()
Volume 2--Utilities 1L ()
Volume 3--Games I ()
Volume 4--Games II ()
Volume 5--Games III ()
Volume 6--Games IV ()
Volume 7--Games V ()
Volume 8--Utilities IIL ()
Volume 9--Educational I ()
Volume 10-Math/Science ()
Volume 11-Graphics I ()
Volume 12-Games VI ()
Volume 13-Games VII ()
Volume 14-IAC Utilities IV ()
Volume 15-Games VIII ()
Volume 16-Utilities V 0
Volume 17 -Graphics II ()
Volume 18-Education IL ()
Volume 19-Communications ()
Volume 20-Music ()
Volume 21-Apple Orchard ()
TOTAL ORDER = $ = =mme=—e

Check nere if you want these shipped---

NAME =

ADDRESS

CITY, STATE, ZIP o

TELEPHONE @ = ===== -

Membership No.(1st three digits after WAP on mailing label) =======--

Make checks payable to "Washington Apple Pi"

Send order to: Washington Apple Pi- ATTN: Librarian
PO Box 34511
Washington, DC 20034

